skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Payani, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 26, 2026
  2. Free, publicly-accessible full text available December 4, 2025
  3. Localizing video moments based on the movement patterns of objects is an important task in video analytics. Existing video analytics systems offer two types of querying interfaces based on natural language and SQL, respectively. However, both types of interfaces have major limitations. SQL-based systems require high query specification time, whereas natural language-based systems require large training datasets to achieve satisfactory retrieval accuracy. To address these limitations, we present SketchQL, a video database management system (VDBMS) for offline, exploratory video moment retrieval that is both easy to use and generalizes well across multiple video moment datasets. To improve ease-of-use, SketchQL features avisual query interfacethat enables users to sketch complex visual queries through intuitive drag-and-drop actions. To improve generalizability, SketchQL operates on object-tracking primitives that are reliably extracted across various datasets using pre-trained models. We present a learned similarity search algorithm for retrieving video moments closely matching the user's visual query based on object trajectories. SketchQL trains the model on a diverse dataset generated with a novel simulator, that enhances its accuracy across a wide array of datasets and queries. We evaluate SketchQL on four real-world datasets with nine queries, demonstrating its superior usability and retrieval accuracy over state-of-the-art VDBMSs. 
    more » « less
  4. In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios. 
    more » « less
  5. Hierarchical Federated Learning (HFL) has shown great promise over the past few years, with significant improvements in communication efficiency and overall performance. However, current research for HFL predominantly centers on supervised learning. This focus becomes problematic when dealing with semi-supervised learning, particularly under non-IID scenarios. In order to address this gap, our paper critically assesses the performance of straightforward adaptations of current state-of-the-art semi-supervised FL (SSFL) techniques within the HFL framework. We also introduce a novel clustering mechanism for hierarchical embeddings to alleviate the challenges introduced by semi-supervised paradigms in a hierarchical setting. Our approach not only provides superior accuracy, but also converges up to 5.11× faster, while being robust to non-IID data distributions for multiple datasets with negligible communication overhead 
    more » « less
  6. Hyperdimensional computing (HDC) has drawn significant attention due to its comparable performance with traditional machine learning techniques. HDC classifiers achieve high parallelism, consume less power, and are well-suited for edge applications. Encoding approaches such as record-based encoding and N -gram-based encoding have been used to generate features from input signals and images. These features are mapped to hypervectors and are input to HDC classifiers. This paper considers the group-based classification of graphs constructed from time series. The graph is encoded to a hypervector and the graph hypervectors are used to train the HDC classifier. This paper applies HDC to brain graph classification using fMRI data. Both the record-based encoding and GrapHD encoding are explored. Experimental results show that 1) For HDC encoding approaches, GrapHD encoding can achieve comparable classification performance and require significantly less memory storage compared to record-based encoding. 2) The utilization of sparsity can achieve higher performance as compared to fully connected brain graphs. Both threshold strategy and the minimum redundancy maximum relevance (mRMR) algorithm are employed to generate sub-graphs, where mRMR achieves higher performance for three binary classification problems: emotion vs. gambling, emotion vs. no-task, and gambling vs. no-task. The corresponding AUCs are 0.87, 0.88, and 0.88, respectively. 
    more » « less